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Abstract

There is strong evidence that whole-grain foods protect against heart disease. Although underlying mechanisms and

components are unclear, betaine, found at high levels in wheat aleurone, may play a role. We evaluated the effects of a

diet high in wheat aleurone on plasma betaine and related measures. In a parallel, single-blinded intervention study, 79

healthy participants (aged 45–65 y, BMI$ 25 kg/m2) incorporated either aleurone-rich cereal products (27 g/d aleurone) or

control products balanced for fiber and macronutrients into their habitual diets for 4 wk. Fasting blood samples were taken

at baseline and postintervention (4 wk) from participants. Compared with the control, the aleurone products provided an

additional 279 mg/d betaine and resulted in higher plasma betaine (P , 0.001; intervention effect size: 5.2 mmol/L) and

lower plasma total homocysteine (tHcy) (P = 0.010; 20.7 mmol/L). Plasma dimethylglycine and methionine, which are

products of betaine-mediated homocysteine remethylation, were also higher (P , 0.001; P = 0.027) relative to control.

There were no significant effects on plasma choline or B vitamins (folate, riboflavin, and vitamin B-6). However, LDL

cholesterol was lower than in the control group (P = 0.037). We conclude that incorporating aleurone-rich products into the

habitual diet for 4 wk significantly increases plasma betaine concentrations and lowers tHcy, which is attributable to

enhanced betaine-homocysteine methyltransferase-mediated remethylation of homocysteine. Although this supports a

role for betaine in the protective effects of whole grains, concomitant decreases in LDL suggest more than one com-

ponent or mechanism may be responsible. J. Nutr. 140: 2153–2157, 2010.

Introduction

Epidemiological studies indicate that diets high in whole grains
are associated with decreased incidence of chronic diseases (1,2).
However, the components and mechanisms underlying these
beneficial effects are poorly understood. Betaine is a component
found at relatively high concentrations in wheat grain, partic-
ularly in the bran and aleurone fractions (3,4), and although its
potential role in the health benefits of whole grains has been

proposed (5), it largely has been neglected. Betaine is an
osmolyte (6), but it also plays a role in remethylating total
homocysteine (tHcy)8 (7), a risk factor for cardiovascular
disease and particularly stroke (8). Recent studies have shown
that betaine supplementation decreases plasma tHcy (9–12) and
that betaine status or intake is inversely associated with plasma
tHcy (13–15). Betaine can also act as a lipotrope (6) and may
have a role as a therapeutic agent for nonalcoholic fatty liver
disease (16–18), a condition linked to metabolic syndrome
(19,20).

Previous work using explorative metabolomic approaches
showed the effects of a whole-grain diet on plasma and hepatic
betaine in animals (21,22). Additionally, work from our group
has shown significant postprandial increases in plasma betaine
following the consumption of wheat bran and to a greater extent
wheat aleurone (23). However, there do not appear to be any
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previous reports on the effect of chronic consumption of whole-
grain fractions on betaine status and related biomarkers. We
therefore carried out a 4-wk intervention study in apparently
healthy, older, overweight men and women at risk for metabolic
syndrome by using cereal products enriched with wheat aleurone
to evaluate the effect on plasma betaine and related biomarkers.

Materials and Methods

Participants. Eighty healthy participants were recruited from the North-

ern Ireland population. The inclusion criteria were: aged 45–65 y, BMI$

25 kg/m2, in general good health with no current or recent serious illness,
no use of prescription medicine or vitamin or mineral supplements,

nonsmoker, without diagnosed diabetes, and not consuming a special

diet. The study was approved by the University of Ulster Research Ethics

Committee and all participants gave written informed consent.

Study design. The study was a parallel, single-blinded, placebo-

controlled intervention trial. Participants were stratified by sex and age

and randomly assigned to receive either aleurone-rich cereal products
(aleurone group) or control cereal products (control group). During the

4-wk intervention, participants were asked to incorporate 1 portion of

ready-to-eat (RTE) cereal and 2 bread roll portions/d into their habitual
diets. Fasting venous blood samples and weight measurements were

taken at baseline and postintervention (4 wk). Cereal products were

supplied weekly and compliance was monitored by self-reported records

and by the collection of unused or empty packets at the end of each week.
Dietary intakes were assessed with 4-d food diaries before (baseline) and

during wk 3 of the intervention. Energy, nutrient, and fiber intakes were

estimated by using dietary analysis software (Weighed Intake analysis

Software Package forWindows, version 3.0, Tinuviel Software) to which
choline and betaine values were added (3). Reported energy intakes from

the dietary records were compared against estimated energy require-

ments calculated from published sex- and age-specific equations (24)
using a corresponding activity level of “low active.”

Cereal products. Aleurone-enriched bread (in the form of rolls) and

extruded RTE cereal products were developed for use in this study. Each
cereal portion contained 9 g of aleurone (Bühler), resulting in a nominal

dose of 27 g/d aleurone. The control bread and RTE cereal products were

formulated with similar energy, macronutrient, and fiber contents

and portion weights as their aleurone counterparts, using wheat
starch (Meritena 200, Syral), wheat gluten (AG110, Syral), wheat

fiber (Vitacel), and palm oil. The major ingredient in all products was

refined (white) wheat flour. The RTE cereal (Bühler) was portioned into
individual packages for distribution to participants. Bread (Barilla) was

packaged and stored at 220oC until required. Products were analyzed

for folate by a microbiological assay (25) (University of Helsinki),

betaine and choline byNMR (26) (Rothamsted Research), and riboflavin
and vitamin B-6 by HPLC using Comité Européen de Normalisation

standard reference methods (Eurofins Steins Laboratorium).

Blood sampling and biochemical measurements. Fasting blood
samples were collected into serum separator preevacuated blood tubes

for lipid analyses and EDTA-containing preevacuated blood tubes for

other analyses. Samples were held on ice until centrifugation (3ºC, 10003 g
for 15 min) within 4 h and stored at 2708C until analysis. Plasma
choline, betaine, dimethylglycine (DMG), tHcy, methionine, riboflavin,

and pyridoxal 5’-phosphate (PLP), the main active derivative of vitamin

B-6, were determined by liquid chromatography-tandemMS (27,28) and
plasma folate by a microbiological assay (29). These analyses were

carried out by Bevital AS. Serum total cholesterol, HDL cholesterol, and

triacylglycerol were measured by standard kits (Randox) using an

automatic centrifugal clinical chemistry system (Ilab 650 Clinical
Chemistry System, Instrumentation Laboratory); LDL cholesterol was

calculated (30).

Statistics. Sample size calculations based on Fenech et al. (31) indicated
that 36 participants in each treatment group would give sufficient power

(P , 0.05; 80% power) to detect significant effects on plasma tHcy. We

increased the participant numbers to 40 to allow for drop-outs.

Postintervention data (4 wk) were compared by ANCOVA using the
General Linear Model with baseline data as a covariate. Data with

skewed distribution were transformed logarithmically prior to analyses.

Simple and multiple linear regression were used to determine relation-

ships between variables and independent t-tests to evaluate differences in
reported compliance between groups. SPSS 11.5 for Windows was used

for all statistical analyses. Results are expressed as mean 6 SEM and

differences were considered significant at P , 0.05.

Results

Compliance and baseline profile. One female dropped out
for medical reasons not related to the study, and 79 participants
completed the intervention (Supplemental Fig. 1; Table 1).
Reported compliance was good and participants consumed 95.96
1.2% of the aleurone products and 96.3 6 1.1% of the control
products (P = 0.77).

Analyses of cereal products. Analysis of the cereal products
indicated that the aleurone and control products were similar in
macronutrient and fiber contents (Table 2). From the compli-
ance data, we estimated that mean micronutrient intakes from
these products per day for the aleurone and control groups,
respectively, were: choline, 74 vs. 35 mg; betaine, 487 vs. 208 mg;
folate, 99 vs. 61 mg; riboflavin, 0.08 vs. 0.04 mg; and vitamin
B-6, 0.32 vs. 0 mg.

Dietary intakes and changes in body weight. From the 4-d
food diaries, participants reported consuming 80.2 6 2.4% of
their estimated energy requirements at baseline. Overall mean
baseline daily intakes for betaine and folate were 127 6 6 mg/d
(range 40–347) and 265 6 10 mg/d (range 4–41), respectively,
and 16 (20%) participants reported consuming less than the
recommended 200 mg/d folate (32). During the intervention,
intakes of betaine, choline, folate, and vitamin B-6 were
significantly higher in the aleurone group compared with control
(Table 3) and betaine intake in the aleurone group was almost
double the control. There were no significant differences in
energy, fiber, or macronutrient intakes between groups and the
intervention did not affect body weight (change from baseline
data20.156 0.15 kg and20.166 0.18 kg for the aleurone and
control group, respectively).

Plasma betaine, choline, and B vitamins. The overall mean
baseline plasma betaine and choline concentrations were 33.96
0.8 mmol/L and 8.8 6 0.2 mmol/L, respectively. Plasma
riboflavin and vitamin B-6 were within normal ranges and no
participants had riboflavin , 5.0 nmol/L or PLP , 20 nmol/L
(33). The overall mean baseline plasma folate concentration was
13.5 6 0.8 nmol/L and folate deficiency [plasma folate ,
7 nmol/L (32)] was evident in 10 participants. Postintervention
plasma betaine and DMG concentrations were significantly

TABLE 1 Participant characteristics

Aleurone group Control group

n 39 40

Gender, % male 51 50

Age, y 51.5 6 0.8 51.8 6 0.8

BMI, kg/m2 28.7 6 0.6 29.0 6 0.5

1 Values are means 6 SEM.
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higher in the aleurone group compared with control (Table 4),
and there was a significant positive correlation between changes
in plasma betaine and DMG (P , 0.001; R2=0.34). Plasma
concentrations of the other tHcy-related micronutrients, cho-
line, folate, riboflavin, and PLP did not differ between groups.

Plasma tHcy and methionine. The overall mean baseline
plasma tHcy concentrations were 10.1 6 0.3 mmol/L (range
6.0–20.2) and 2 of the participants were hyperhomocysteinemic
at baseline (i.e. tHcy .15 mmol/L) (34). Compared with the
control group, the aleurone group had significantly lower
postintervention plasma tHcy and higher methionine concen-
trations (Table 4) and the overall effect size of the intervention
on tHcy was 20.7 mmol/L. A median split of participants in the

aleurone group into lower and higher baseline plasma folate
indicated a mean change in tHcy concentration of 20.9 mmol/L
(n = 19) and 0.1 mmol/L (n = 20) in the lower and higher plasma
folate groups, respectively.

Serum lipids. Serum total, LDL, and HDL cholesterol and
triacylglycerol concentrations were within normal ranges. Post-
intervention serum LDL-cholesterol was significantly lower in
the aleurone group than in the control group, but the interven-
tion did not affect other lipids (Table 4).

Discussion

These results show that incorporating products enriched with
the aleurone fraction of wheat into a habitual diet significantly
increases both intake and plasma concentrations of betaine.
These results support preliminary findings from our postpran-
dial work (23) and indicate that wheat aleurone may be a good
source of dietary betaine. Baseline betaine intakes and plasma
betaine concentrations were comparable to other studies, which
reported mean intakes of 100–314 mg/d (35–37) and plasma
concentrations of 31.4–40.7 mmol/L (12,38,39). However,
unlike other studies with supplements that used much larger
doses of betaine (1–6 g/d) to give significant increases in plasma
betaine concentrations (.20 mmol/L) (9,12), we found a signif-
icant increase in plasma betaine (5.2 mmol/L) with a difference
in betaine intake of 279 mg/d betaine. Furthermore, to our
knowledge, the only other study that has resulted in elevated
plasma betaine without the use of supplements was a 2-wk
intervention that compared food-derived betaine (~0.59 g/d
additional betaine) and betaine supplementation (1 g/d) and
showed similar increases in plasma betaine (~20 mmol/L increase
from baseline) irrespective of the source of betaine (40).

The increases in betaine intake and plasma betaine were
accompanied by a significant decrease in plasma tHcy and
significant increases in plasma methionine and DMG. Homo-
cysteine metabolism can occur through 3 pathways: the betaine-
homocysteine methyltransferase pathway, requiring betaine or
betaine derived from choline and yielding DMG and methio-
nine; the 5-methyltetrahydrofolate pathway, which requires
vitamin B-12 and folate and yields methionine; or the vitamin
B-6–dependent transsulfuration pathway, which yields cysteine.
The lack of changes in plasma B vitamins and choline and the
significant increase in DMG suggest that the main pathway by
which tHcy has been lowered in this study is via the betaine-
homocysteine methyltransferase pathway, predominately as a
result of the higher betaine intake. The magnitude of the in-
tervention effect size on tHcy was modest (20.7 mmol/L).
However, this effect was more pronounced in participants with
lower baseline plasma folate (20.9 mmol/L); this is consistent
with previous work that suggests that the relationship between
plasma betaine and tHcy is stronger when folate status is low
(7,14). It is notable that a significant lowering of tHcy occurred
over a relatively short time and in a small cohort where raised
tHcy was not an inclusion criterion. Furthermore, the change in
tHcy concentration was of a similar order of magnitude to those
reported in previous interventions that used larger doses of
betaine in participants with higher tHcy (tHcy effect sizes of
intervention: 21.3 and 21.8 mmol/L for 1.5 (10) and 6 g/d (11)
betaine, respectively for 6 wk). Additionally, Fenech et al. (31)
included participants with elevated plasma tHcy and low plasma
folate concentrations and observed that, following consumption
of 67 g/d aleurone for 4 wk (2.5 times the level in the present
study), the intervention effect size on tHcy was 20.8 mmol/L,

TABLE 2 Weights and energy, macronutrient, fiber, and
micronutrient contents of cereal products

Aleurone products Control products

RTE cereal Bread RTE cereal Bread

per portion

Fresh weight, g 40 67 39 67

Dry weight, g 39 42 38 43

Energy, kcal 124 138 124 145

kJ 518 578 517 606

Protein, g 5.3 7.3 5.1 7.4

Carbohydrate, g 26.6 22.6 26.5 24.4

Starch, g 24.8 18.6 24.8 20.4

Sugars, g 1.8 4.0 1.7 4.0

Fat, g 0.3 2.7 0.4 2.7

Fiber,1 g 5.1 6.5 5.7 6.7

Betaine, mg 123 193 28 94

Choline, mg 11 33 6 15

Folate, mg 20 41 6 29

Riboflavin, mg 0.01 0.04 0 0.02

Vitamin B-6, mg 0.13 0.10 0 0

1 Englyst method.

TABLE 3 Estimated daily intakes at baseline and during a
4-wk intervention with aleurone-rich or control
cereal products1,2

Aleurone group, n = 39 Control group, n = 40 P 3

(ANCOVA)Baseline Intervention Baseline Intervention

Energy, kcal 2036 6 83 2044 6 78 2122 6 97 2074 6 92 0.51

kJ 8520 6 347 8551 6 327 8878 6 408 8678 6 386

Carbohydrate, g 243 6 12 240 6 10 249 6 11 246 6 9 0.92

Starch, g 139 6 6 142 6 6 140 6 6 144 6 6 0.90

Fat, g 80.4 6 4.4 79.5 6 3.9 85.2 6 4.5 75.7 6 4.9 0.13

Protein, g 83.3 6 3.8 90.6 6 3.4 87.3 6 4.0 92.0 6 3.6 0.82

Fiber,4 g 14.0 6 0.6 26.8 6 0.7 15.5 6 0.8 29.4 6 0.8 0.12

Betaine, mg 127 6 9 551 6 10 128 6 10 289 6 12 ,0.001

Choline, mg 284 6 13 363 6 19 303 6 17 310 6 19 0.002

Folate, mg 258 6 12 281 6 11 273 6 16 257 6 11 0.005

Riboflavin, mg 1.76 6 0.08 1.53 6 0.09 1.81 6 0.11 1.52 6 0.07 0.77

Vitamin B-6, mg 2.15 6 0.09 2.09 6 0.09 2.29 6 0.13 1.88 6 0.10 0.019

1 Values are means 6 SEM.
2 Data from self-reported 4-d food diaries collected prior to (baseline) and during wk 3

of the intervention.
3 Comparison of intervention data between groups.
4 Englyst method.
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with further decreases after 8 wk. These authors attributed the
lowering in plasma tHcy to the high-folate content of aleurone,
which provided ~615 mg/d folate but did not consider a potential
role for betaine as a contributing factor (31). At present, there
are no reports of intervention studies evaluating the impact of
whole grains on tHcy; however, a cross-sectional study showed a
strong inverse association between tHcy concentrations and
whole grain intake (P , 0.01), an association not affected by
adjustment for folate and other B vitamin intake (41).

Betaine supplementation has also been shown to increase
plasma total and LDL cholesterol, possibly through the in-
creased synthesis and availability of phosphatidycholine, which
promotes VLDL production, leading to clearance of triacylglyc-
erol from the liver (42). However, LDL cholesterol significantly
decreased in the present study. The factors underlying this effect
are unclear, but it may be a result of the lower dose of betaine
used here compared with the doses used in supplementation
studies. This suggestion is supported by an intervention study
that showed a small decrease in LDL cholesterol on a high-
betaine diet (0.59 g/d) but no change with a higher dose betaine
supplement (1 g/d) (40). Also, a population-based study showed
that plasma betaine concentrations were inversely associated
with non-HDL cholesterol (43). Furthermore, our results are
consistent with both cross-sectional and intervention studies
that suggest that consumption of whole grain-rich diets are
associated with lower concentrations of LDL cholesterol
(41,44,45). However, it is possible that other components
present in the aleurone, such as the phenolic acids, underlie
the effects on LDL cholesterol (46).

In conclusion, this 4-wk intervention has shown that the
incorporation of aleurone-enriched cereal products into habitual
diets significantly increased plasma betaine and modestly
lowered plasma tHcy and LDL cholesterol. This suggests that
aleurone, and in particular the betaine component of aleurone,
may play a role in the health benefits of whole grains. However,
there is need for further longer term interventions using
aleurone-rich or whole-grain foods.
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